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Abstract continued. 

a limacon.  An optimum launch point is established from this 
result.  When, a fixed flight tim* is specified, the locus 
of points of equal time to the target is shown to be an 
ellipse.  This determines the release path for the case of 
multiple delivery from a single launch vehicle. 
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FOP.EVCPD 

This report presents an analytic assessment of one 

type of steering law used to control the trajectory of 

gliding decelerators.  The analysis is part of a continuing 

effort directed toward investigating methods which will 

improve the accuracy and dispersion characteristics of airdrop 

systems. 

This study was conducted under Department of the Army 

Project No. 1F1 62203 AA33, Drop Zone Dispersion Studies. 
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NOMENCLATURE, 

r  =  Magnitude of the radius vector in polar coordinates 

t  =  Time 

U  =  Vector component of the parachute's total airspeed vector 
in the horizontal plane 

u  =  Magnitude of U 

w  =  Magnitude of the wind speed vector y 

x  =  Horizontal «pace coordinate fix*d to earth 

y  =  Horizontal space coordinate perpendicular to x and fixed 
to earth 

X  s  u/w wind penetration paramoter 

6 *     Azimuth angle in polar coordinates 

Subscripts 

1  =  Launch 

m  =  Minimum 

ii 
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ABSTRACT 

The two dimensional trajectory of a radial homing gliding 

parachute in a uniform wind is presented.  The kinematics 

of the motion is discussed generating two first order 

differential equations which are separated and solved by 

direct integration.  The resulting expression functionally 

relates the radial position of the parachute to the 

instantaneous value of the azimuth angle.  Utilizing this 

result, an exact solution for time in terms of space coordinates 

is then obtained.  From geometric considerations, the angular 

motion along the azimuth direction is found to be stable when 

the system is flying into the wind.  The trajectory equation 

shows that under the radial guidance constraint, a gliding 

system without wind penetration ability can never pass directly 

over the intended point of impact.  However, when the system's 

glide capability is greater than that of the wind, the para- 

chute has the potentiell of always reaching the target, provided 

there is sufficient flight time.  In this glide region, the total 

time to the target as a function of launch angle relative to the 

wind line, generates the plane curve of a limacon.  An optimum 

launch point is established from this result.  When a fixed 

flight time is specified, the locus of points of equal time to 

the target is shown to be an ellipse.  This determines the 

release path for the case of multiple delivery from a single 

launch vehicle. 
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INTRODUCTION 

The most severe limitation on parachute delivery is its 

inherent inaccuracy.  Descending as a static entity in an 

environment which cannot be controlled or precisely predicted, 

the parachuted load impacts essentially where the wind directs 

it.  Investigators, both private ana government sponsored, 

recognizing the constraint imposed by the passive role of 

the standard decelerator, have developed highly maneuverable 

gliding canopies capable of penetrating winds in excess of 

twenty five knots.  In addition to their aerodynamic qualities 

these flexible wings can be stowed and deployed according to 

standard parachute methodology and thereby retain the desirable 

packaging feature of conventional designs. 

Deceleration systems, employing gliding canopies, have 

been extensively investigated in research and development 

programs by both military and space agencies.  In general, 

the utilization of unmanned gliding systems for military 

airdrop or for providing the terminal stage air ti'ansport 

of re-entry vehicles, requires guidance and control equipment. 

Radio control guidance systems have been developed for military 

airdrop applications,  and have been proposed for use in 

2 
sounding rocket payload retrieval. 

In these systems the parachute's direction of flight is 

controlled through a servo mechanism rigged to the suspension 

lines of the canopy.  Left or right constant rate turns are 
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produced by retracting the appropriate control line.  The 

communication which activates the control and steers the 

system is provided by a radio transmitter located at the 

intended impact point, and a receiver with two antennas, 

positioned on the suspended load.  The antennas are physically 

separated and are located on the load, so as to define a 

plane which is perpendicular,to the horizontal projection of 

the parachute's total airspeed vector.  With this arrangement, 

signals emanating from the transmitter will appear equal in 

magnitude to the separate antennas only when the system's 

velocity vector is aligned with a radial path connecting it 

and the target.  For any other orientation, a disparity in 

signal strength is perceivec which activates a control, 

producing a rotation of the parachute towards the gr-ound 

based transmitter.  The wind acting in conjunction with 

some over control, continually disturbs the system from 

fixing on a straight line course causing the parachute to 

steadily maneuver as it seeks radial alignment.  This motion 

which effectively produces what might be termed a radial 

homing maneuver, persists throughout the flight or until the 

load passes directly over the transmitter.  Upon passing over 

the target the system executes an orbita" path about the 

transmitter until impact. 

This paper treats the approach portion of the trajectory 

of a radial homing gliding parachute in a uniform wind. 

Exact solutions completely determining the path in terms of 

MHM     
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time and space coordinates are obtained.  A detailed analysis 

of these equations is made leading to a comprehensive 

assessment of gliding parachute capability when operating in 

a uniform wind and constrained by radial homing.  Previous 

efforts dealing specifically with wind effects upon gliding 

systems have been carried out on a numerical basis and are 

contained in References 3 and 4.  An independent analytic 

treatment similar in scope and applied to determining the 

time required for an aircraft to execute a round trip in a 

uniform wind, may b-3 found in Reference 5. 

EQUATIONS FOR RADIAL GUIDANCE 

Analysis 

Figure la depicts the essential geometric aspects of a 

radial homing gliding parachute in a uniform wind.  The wind 

speed is taken to be steady, to lie entirely ir; the x-y plane, 

and to point along the y axis in a negative sense.  There is 

no loss of generality in the arbitrary alignment of the wind 

line with the y direction, since any other selection merely 

constitutes a rotation of the resulting trajectory relative 

to this coordinate axis. 

Under equilibrium conditions, the magnitude of the 

parachute's velocity relative to the air mass remains constant 

The 15.ft to drag ratio is fixed, thereby, specifying the 

vertical and horizontal projections of the total airspeed 

vector.  It is assumed that the physical act of deflecting a 

^ 
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control line serves to change only the direction of the 

horizontal velocity component while leaving the vertical vector 

undisturbed.  The motion is, therefore, separated with the 

vertical mode one of steady descent.  As a consequence, the 

problem becomes a two-dimensional one where the radial guidance 

constraint reacting to the presence of the wind, forcesU the 

airspeed vector in the horizontal plane, to assume a continuous 

orientation in the negative radial direction.  Operationally, 

this motion th&t is idealized by steady modulation of the 

control, approximates a series of discrete actions combining 

left and right turns wit' periods of straight flight 

Within the constraints specified then, the fundamental 

relationship describing the motion can now be stated as a 

vector equation relating the absolute velocity of the system 

relative to an earth fixed reference, to the sum of  the wind 

velocity and the horizontal component of the parachute 

airspeed vector U.  Expressod in polar coordinates the 

scalar equations obtained from this vector equality are: 

dr/dt  = -(wsine+u), 'D 
and 

(r)d6/dt •VCOS0 (2) 

S-tability Characteristics of the Wind Line 

Before attempting to obtain solutions from equations 

(1) and (2), some immediate information regarding the nature 

«ytfyu .^_— 
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of the angular motion of the parachute with respect to the 

wind axis can be found directly by examination of equation 

(2) in conjunction with figure 1.  From (2) it is seen that 

de/dt<0, thereby, requiring e to be a decreasing variable. 

The physical ramifications of this observation can be appreciated 

by noting again from equation (2) that the angular velocity 

of the system relative to the fixed reference is due entirely 

to the wind with no contribution from the vector U.  At 

locations then on the upwind sido, that is, coordinate positions 

where y is. a Dositive, this component of the wind velocity 

will continually increase any misalignment between the wind 

line and the vector U.  On the down-wind side, ^y<0), angular 

alignment will be reinforced by this action of the wind. 

Consequently, and as a figure 1 shows, approaches made along 

the wind axis from a down-wind position will be insensitve to 

nominal heading disturbances and are, therefore, stable while 

the converse is true for the upwind case.  Hence, a gliding 

system which is executing a radial steering «aneuver in somewhat 

steady atmospheric conditions naturally seeks and maintains 

alignment into the wind.  This property, that exists at least 

in theory, enhances the potential application of gliding 

deceleratcrs, particularly when consideration is given to 

the problem of reducing and cushioning the horizontal velocity 

prior to and during impact. 
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Trajectory Determination 

Turning now to equation (1) and (2) the r and e variables 

may readily be separated to give; 

dr/de  =  r(tan0+Xsec0); (3) 

Where X =  u/w is defined as the wind penetration parameter 

The expression given in (3) can now be integrated directly 

yielding: 

Ksece(sec9+taae) ; (U) 

Where K, the constant of integration, is given by 

r./sec0 (sec0 +tf»n0 ) . (5) 

The basic formulation and subsequent solution to (3) 

assumes initial alignment along a radial at some angular 

offset from the wind line.  To apply (3) the initial or 

launch position will be selected to lie along a ray between 

+_ 90 degrees.  The situation of perfect alignment along the 

wind axis at launch is a special case and cannot be handled 

directly with (3). Evaluation of this particular condition 

is made directly in <1) by requiring 9 to be 90 degrees. 

The resulting solution is the physical case where the 

parachute either closes with, remains stationary, or departs 

from the target along a straight line path coincident with 

the wind line. 
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A rectangular form for equation (4) can b« obtained by 

defining: 

x/k, (6) 

and 

y/K. (7) 

Making the appropriate substitutions in (4) yields: 

<l/2Mp(x + i)/VX-im> (8) 

For the special case of X = 1 this expression reduces to 

<l/2)(p'-l). (9) 

Hence, when the wind speed is equal in magnitude to the 

parachute'3 horizontal airspeed component u, the ground 

track of a radial homing gliding system will be parabolic. 

This result will be seen to be of practical significance 

when trajectories with larger values of X are examined. 

It is now possible to obtain an integral relationship 

for time by combining equation (2) with the expression 

in («♦) .  This giver : 

(-KX/u)/sec 0(sec6+tan8)*dQ- (10) 

Equation (10) car. be intef rated by parts to give the 

general expression for time; 
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{X/u(X   -!)}{r   (X-sine1)-r(>-sine)} (11) 

However, for the special case of X  = 1, (11) does not hew 

requiring evaluation directly from (1Q).  Thus when X = 1; 

t  =  (-KX/2u){secG(sece + tanO) + ln(secO+tan9))j ..  (12) 
© J. 

At this point, the trajectory of a radial homing gliding 

parachute operating in a uniform wind is completely specified 

by equations (4), (5), (11), and (12). 

TARGET LIMITS WITH RADIAL HOMING 

The Case of \<1. 

Equation (4) is graphically represented in figure (2) 

for the circumstance where X<1.  A unit launch radius is 

assumed and curves are generated for a selected value of 

the initial azimuth angle.  The nature of these curves indicate 

that r never becomes zero.  Instead, the path lines appear to 

bend avay causing the parachute to pass through what appears 

to be a minimum radial position relative to the aiming point. 

The first of these observations can be verified directly 

by examining equation (4) when r is required to be zero.  This 

leads to the expression; 

(13) 

This relationship cannot be satisfied when X<1 for values of 

8 in the range, -9CK9<90 degrees. Consequently, r can never 

be zero when X<1. 

0  = {(l+sin0)X"1/(l-sine)X+1}1/2 

——___ 
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The existence of in extremum can now be investigated 

by applying maxima and minima theory of differential calculus 

to (H).  That is, dr/df) Is set equal to zero yielding the 

requirement that: 

either r = 0, 

or  sin© X . (15) 

The first of these results has been previously dealt with 

thereby designating (15) as the appropriate condition.  Since 

(15) can be satisfied for A between 0 and 1 the existence of 

a relative minimum r has been verified.  The magnitude of 

the minimum radius can now be evaluated as; 

rm  =  {K/(1-X2)1/2H1-X/1+X}X/2 

When  6=  9 m Arc sin (-X) 

(16) 

(17) 

The velocity components at this position are given by; 

dr/dt 

and   (r)d0/dt 

0, 

•w(l-X2)1/2 

(18) 

(19) 

Equations (16) and (17) completely designate what 

might be called the perigee of the homing orbit when X<1. 

However» some restrictions are in ord *•  oncerning the application 

of (16) regarding the quantity K.  The constant of integration 

K is seen, from (5) to be a function of 9 i as well as \. 
V 
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Intuititively, it would be expected that for fixed values of 

X ,r would tend to increase as 0, takes on values further 
in 1 

away from the 90 degree ray.  This will be true in (16) up 

to the point where; 

■ 

01 Arc sin (-X) (20) 

Beyond this condition (i.e. launch angles less than those 

given by equation (20))the equality required in (15) cannot 

be met, since, 9 being a decreasing variable prevents counter 

clockwise rotations.  Physically then, there will be no 

relative minimum point along the path when 0 <Arc sin (-*) 

and, a system launched at these coordinates will be on a 

course of ever increasing radius. 

From the treatment thus far, some conclusions regarding 

the accuracy potential of radial homing systems is apparent. 

A gliding system with X<1 can never fly directly over the 

target.  Its closest penetration will be given by (16) 

provided the launch is effected such that  0 >Arc sin (-*). 

If this condition is not met the parachute will be on a 

divergent path with the launch radius (r ) its minimum point 

relative to the target. 

The Case of X>1. 

Much of the previous analysis has laid the foundation 

for treating this particu/ar case.  Returning to equation (13) 

1? 
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it is seen that when © =  -90 degrees, r will be r.ero for all 

values of X >1.  The requirement in (14) is now met, thereby 

establishing the obvious fact that r = 0 is a minimum. 

Figure (3), which is a plot of equation (H) , visually verifies 

thete observations again, for the conditions of a unit launch 

radius and a selected initial angular coordinate. 

From Figure (3) it is noted that the parabolic path (the 

special case of X = l), provides a border to all trajectories 

with higher values of X launched from the same position. 

Extending the tail of this reference parabola effectively produces 

a boundary containing all paths initiated at the nominal 

reference radius and at some angular coordinate between the 

wind line and the selected reference angle.  The impact 

points of all radial homing systems launched under these 

conditions will be found interior to the envelope defined by 

the reference parabola and the wind axis.  If then, equation 

(12) is utilized, the above definition of required drop 

zone area can be further refined. 

In summary then, the analysis of the case where X>1 

has demonstrated that a radial homing gliding system with 

some wind penetration ability, has the potential of always 

reaching the target provided there is sufficient flight time. 

It has also been shown, through equation (13), that ideally 

the system will achieve alignment into the wind the moment 

it arrives over the target.  This, of course, is the 
/ 
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riGURE 3:  RADIAL HOhING TRAJECTORIES WHEN X>1 
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optimum landing configuration for considerations of .'"ipact. 

The special circumstance where A = .1, the case of a parabolic 

path, is seen to provide a tool for estimating the required 

drop area when certain nominal launch conditions are specified 

LAUNCH CRITERIA 

Fixed Radius of Launch 

Turning now to equation (11), flight time reauirements 

for radial homing gliding systems will be investigated for 

the case where A>1.  Target acquisition implies the physical 

attainment of coordinates r = 0, and o -   -90 degrees. 

Imposing thes-e— co-nditions on (11) yields: 

ut/r  A T= ( A/A -1)(A-sinO ) (21) 

As might be expected, the time necessary to reach the 

zero radius position is a function of the launch coordinates 

as well as the penetration ability of the gliding system. 

V/hen 0. is taken as the independent variable, T a non 

dimensional time quantity as the radial position coordinate, 

and A considered to be a parameter, the plane curve generated bv 

(21) is recognized as a special form of the limacon of Pascal. 

Figure (4) is a graphical presentation of eauation (.21). 

Physically, the situation that is being considered, is the 

case where a circle is imagined to be drawn about the 
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FIGURE !♦:  FLIGHT TIME REQUIREMENTS FROM POSITIONS ON 

A UNIT CIRCLE CENTERED AT THE IMPACT POINT. 
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intended impact point and the required flight time from various 

locations on the circumference is to be determined.  In this 

discussion it is assumed, of course, that the launch is a 

pre'mediatated one, and that the question of where to initiate 

the trajectory is being addressed.  The form of (21) is a 

convenient one for handling this analysis since the quantities 

capable of independent variation will represent changes in 

wind heading and intensity,  In practice it may be conceivable 

to exercise tight control over the in-flight positioning of 

the launch platform, as veil as the sequence involving the 

deployment and inflation of the gliding device.  However, 

control over environmental conditions obviously is beyond the 

realm of practical consideration.  All that can - reasonably 

be expected concerning the wind, is knowledge of its nominal 

magnitude and direction at some time close to the actual 

launch.  The determining factor then regarding accuracy, will 

be the wind velocity.  It is, therefore, extremely desirable 

if possible to select an initial launch position which is 

relatively insensitive to tolerable fluctuations in wind 

speed or direction. 

From Figure (4) the manner in which the tima of flight 

curves tend to flatten and collect near the 90 degree ray 

lends to the tentative conclusion that this is the optimum 

azimuth position.  To substantiate this observation 

analytically, the change in T due to independent variations 

in X and 9, is investigated through equation (21).  Consider then 

dx (3T/3X)dx+Oe/3G   )d01; (22) 
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Where, 

(3x/3X) {(X2 + l)sin0 -2X}/Q2-1) (23) 

and, 

Ot/901) ■XcosO /(X -1) (2«0 

The most desirable circumstance in (22) would be for dT 

to be zero for all allowable variations in dX or de .  This 

requires both (23) and (24) to vanish simultaneously. 

However, for X>1 there is no unique launch azimuth which 

will satisfy this condition.  The objective then will be 

to locate the value of 0, which makes the respective 

coefficientsof dX and dQ  as close to zero as possible. 

In this manner the absolute value of dT is in a sense, 

minimized.  To determine 0, the algebra of vectors and vector 

space will be useful.  From equation (22) dt can be thought 

of as a scalar quantity generated by the dot product of 

two vectors.  These numerical vectors are derived in turn 

from the sensitivity coefficients 3T/3X andSt/SO^» and the 

error terms dX and d0 .  Utilizing this notion, the Schwartz 

inquality criterion  can be applied directly to equation 

(22) yielding the requirement that; 

!dT|<{(3T/3X)%(3T/3ei)
2}1/2{(dX)2+(d01)

2}1/2.  (25) 

18 
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From this result the* it is seen that In order for |d?|to 

remain small, while the direction and intensity of the wind is 

allowed to vary in an independent and uncontrollable fashion, 

the value of {(3T/3A) +(3T/30 ) I1'2 must be minimum.  This 

condition is met when 9 = 90 degrees for all positive 

X<100. 

It has been established from the above discussion, that 

flight time requirements as determined from equation (21) 

for 0, = 90 degrees will be insensitive to minor wind anomalies. 

Since wind changes cannot be controlled or anticipated in 

the manner \.hat other variables may be influenced, a release 

position accurately located according to this criterion will 

result in the smallest dispersions at the impact point. 

Fixed Time of Flight 

Again considering the case of a premediatated launch 

where &>l,the circumstance very often occurs where it is 

desirable to deliver multiple loads in some sequential fashion 

from a single launch vehicle.  If a gliding decelerator 

homing according to some steering law, is employed for this 

application phasing of the individual deployments becomes 

critical.  This problem can be addressed, that is in an 

analytical sense, by attempting to determine for the particular 

guidance routine bring used, the locus of points about the 

target which have equal /light time.  For the particular 

case of radial guidance, this curve can be generated by 

19 
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requiring both t and X to be fixed in (21) and solving for the 

launch radius r  in terms of 0, . 
1 1 

When this is done, it is observed that; 

J/{1-(1/X)sinei)  ; (26) 

Where, 

J &  (ut)(X2-l)/X2 (27) 

Since 1/X  is always positive and less than 1 for all X>1, 

and J is a positive constant, equation (26) is identified as 

xhe polar equation of an ellipse.  The focus of the curve 

becomes the target and the wind line the major axis. 

Equation (26) is a surprising and potentially useful 

result.  Padial homing gliding systems whose trajectories 

are initiated at different points along this elliptical path 

willhave equal flight time requirements relative to reaching 

their common aiming point.  Consequently, when this launch 

profile is executed the time increment between successive 

items discharged from an aircraft in motion no longer becomes 

a significant factor affecting the dispersal of individual 

loads at the impact point. 

CONCLUSIONS 

The attributes of one type of steering techniciue used 

for guidir.g aerodynamic accelerators capable of independent 

motion through the air has been dit-cunsed by examining the 

close form solutions to the equations of motion when a constant 
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wind velocity is assumed.  Analysis of the trajectory equation 

shows that except for perfect alignmsrt alor.g the w,.id line, 

a gliding system maneuvering according to a radial aiming 

scheme, must have a horizontal airspeed component greater 

than the wind speed in order for it to reach the homing 

transmitter prior to impact.  This result essentially defines 

the lift to drag requirements for the radial homing system 

designed to function in some specified nominal or extreme 

wind environment. 

The parabolic ground track which occurs fcr the special 

case where the magnitude of the parachute's intrinsic 

velocity is precisely matched by the wind speed, is an in- 

teresting result which may be useful in establishing physical 

requirements for a target area.  That is, assuming that a 

particular gliding system will only be employed in conditions 

where it can penetrate the wind and if tolerance limits are 

then assigned to positioning errors at the release point, 

along with estimates of wind variability in the time span 

surrounding the mission, a region with high impact 

probability can be determined from the trajectory of a 

reference parabola derived from calculations based on the 

extreme launch points. 

Impact, particularly with high horizontal velocities, 

is a problem cf concern with any airdrop system.  A very 

desirable feature of the radial guidance scheme regarding its 

21 

mm mmnmn^ ^mm^irfmir 'wtm*Mm*.. . ,aa^.^^.-i,r1t,^- .HA..^-   ■—r-i*-,,-y-. .,- 



l.l«»IIJMIÜHilJIIII.I»»»1 •iw*p ■mfmy^wfmHnf^a>^fVM iw!>*w Bp..... ummBB' '■ 'nwji'iwwwiw't 'i'."1 «g.'..»... LDJuimi! w«f| 

potential for attenuating velocities imparted by the wind 

is the apparent stabilizing influence of the wind line.  That 

is, the interaction between the radial constraint and the 

wind velocity essentially forces the system to seek alignment 

into the wind, and rasist disturbances from this position 

once it is established.  In effect, a natural mechanism is 

provided which attempts to minimize the ground speed while 

restricting the direction of the net horizontal motion to 

one dimension. 

Launch criteria, for radial homing systems have been 

identified through analysis of the time solution derived 

from basic considerations.  Two developments have been 

presented.  The first deals with individual load accuracy, 

and demonstrates that in order to minimize errors at the impact 

point due to variations in wind velocity, the release point 

should be located up-wind along the nominal wine! axis.  Since 

no physical control over the wind velocity is possible, this 

result establishes the optimum launch position.  The second 

development, addresses the circumstance requiring the delivery 

of multiple loads which are individually discharged from a 

single vehicle at discrete points along its flight track. 

In this case, the problem is expanded from the determination 

of a single release point to the determination of a release 

path.  For the radial steering procedure an elliptical patn, 
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derived from nominal wind conditions will define the locus 

of points from which the flight time necessary to reach the 

target is constant.  That is, the ability to land at the 

designated impact point is independent of the launch position 

along this curve.  From this result a flight program can be 

developed for the accurate delivery of multiple loads. 
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